Skip to main content Skip to navigation

Publications

Journal Publications

Written by members of the Biodegradable Mulch project team and their co-authors, these publications reflect our research about biodegradable mulch. Publications are sorted by topic area. Publications that are not linked may be available through a literature search such as Google Scholar, by Digital Object Identifier (DOI), or by contacting the author.

General/Policy

  • Brodhagen, M., J. Goldberger, D. Hayes, D. Inglis, T. Marsh, and C. Miles. 2017. Policy considerations for limiting unintended residual plastic in agricultural soils. Environmental Science & Policy 69 (March 2017): 81-84. Available online Dec 2016. doi:10.1016/j.envsci.2016.12.014
  • Goldberger, J.R. 2018. Agriculture in the plastic age. 2018 AFHVS presidential address. Agriculture and Human Valuesdoi:10.1007/s10460-018-9889-x
  • Hayes, D.G, M.B. Anunciado, J.M. DeBruyn, S. Bandopadhyay, S. Schaeffer, M. English, S. Ghimire, C. Miles, M. Flury, and H.Y. Sintim. 2019. Biodegradable plastic mulch films for sustainable specialty crop production. In: Gutiérrez T. (eds) Polymers for Agri-Food Applications. Springer, Cham
  • Hayes, D.G. 2017. Commentary: The relationship between “biobased,” “biodegradability” and “environmentally friendliness” (or the absence thereof). Editorial in J Am Oil Chem Soc 94: 1329-1331. doi:10.1007/s11746-017-3040-9.
  • Madrid, B., S. Wortman, D.G Hayes, J.M DeBruyn, C. Miles, M. Flury, T.L Marsh, S.P. Galinato, K. Englund, S. Agehara, and L.W. DeVetter. 2022. End-of-life management options for agricultural mulch films in the United States. A review. Front. Sustain. Food Syst. 6:921496. doi:10.3389/fsufs.2022.921496
  • Miles, C., L. DeVetter, S. Ghimire, and D.G. Hayes. 2017. Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. Horticultural Science 52(1): 10-15. doi:10.21273/HORTSCI11249-16.
  • Sarpong KA, Adesina FA, DeVetter LW, Zhang K, DeWhitt K, Englund KR, and Miles CA. 2024. Recycling agricultural plastic mulch: limitations and opportunities in the United States. Circular Agricultural Systems 4: e005 doi:10.48130/cas-0024-0003
  • Tofanelli, M. B. D., and S. E. Wortman. 2020. Benchmarking the agronomic performance of biodegradable mulches against polyethylene mulch film: A meta-analysis. Agronomy 10: 1618. doi: 10.3390/agronomy10101618.

Biodegradabability of Mulch and Mulch Materials

Soil Health

  • Bailes, G., M. Lind, A. Ely, M. Powell, J. Moore-Kucera, C. Miles, D. Inglis, and M. Brodhagen. 2013. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic films used in agriculture. J. Vis. Exp. (75), e50373, doi:10.3791/50373.
  • Bandopadhyay, S., L. Martin-Closas, A. M. Pelacho, and J. DeBruyn. 2018. Biodegradable plastic mulch films: Impact on soil microbial communities and ecosystem functions. Frontiers in Mircobiology, 26 April 2018. doi:10.3389/fmicb.2018.00819.
  • Brodhagen, M., M. Peyron, C. Miles, and D.A. Inglis. 2015. Biodegradable plastic agricultural mulches and key features of microbial degradation. Applied Microbiology and Biotechnology 99:1039-1056. doi:10.1007/s00253-014-6267-5
  • Li, C., J. Moore-Kucera, J. Lee, A. Corbin, M. Brodhagen, C. Miles, and D. Inglis. 2014. Degradation of potentially biodegradable plastic mulch films at three diverse U.S. locations. Journal of Agroecology and Sustainable Food Systems 38(7): doi:10.1080/21683565.2014.884515.
  • Li, C., J. Moore-Kucera, J. Lee, A. Corbin, M. Brodhagen, C. Miles, and D. Inglis. 2014. Effects of biodegradable mulch on soil quality. Applied Soil Ecology 79:59-69.
  • Moore-Kucera, J., S.B. Cox, M. Peyron, G. Bailes, K. Kinloch, K. Karich, C. Miles, D.A. Inglis, and M. Brodhagen. 2014. Native soil fungi associated with compostable plastics in three contrasting agricultural settings. Applied Microbiology and Biotechnology 98(14): 6467-6485. doi:10.1007/s00253-014-5711-x
  • Saglam, M., H.Y. Sintim, A.I. Bary, C.A. Miles, S. Ghimire, D.A. Inglis, M. Flury. 2017. Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics. Agric. Water Manage. 193: 240-250.
  • Schaeffer, S.M., M. Flury, H.Y. Sintim, S. Bandopadhyay, S. Ghimire, A.I. Bary, and J.M. DeBruyn. 2015.  Soil physical characteristics and biological indicators of soil quality under different biodegradable mulches. AGU Annual Meeting Abstracts, San Francisco, December 14-15, 2015.
  • Sintim, H.Y., Bandopadhyay, S., English, M.E., Bary, A.I., Liquet y González, J.E., DeBruyn, J.M., Schaeffer, S.M., Miles, C.A., Flury, M. 2020. Four Years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality. Geoderma 381:114665 doi:10.1016/j.geoderma.2020.114665.
  • Sintim, H.Y., S. Bandopadhyay, M.E. English, A.I. Bary, J.M. DeBruyn, S.M. Schaeffer, C.A. Miles, J.P. Reganold, M. Flury. 2019. Impacts of biodegradable plastic mulches on soil health. Agriculture, Ecosystems and Environment 273 (2019): 36-49. doi:10.1016/j.agee.2018.12.002
  • Sintim, H.Y., A.I. Bary, D.G. Hayes, M.E. English, S.M. Schaeffer, C.A. Miles, A. Zelenyuk, K. Suski, and M. Flury. 2019. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Science of the Total Environment 675 (2019): 686-693. doi:10.1016/j.scitotenv.2019.04.179.
  • Sintim, H. and M. Flury. 2017. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environmental Science & Technology, 51(3): 1068-1069. doi:10.1021/acs.est.6b0b042
  • Sintim, H., S. Bandopadhyay, S. Ghimire, M. Flury, A. Bary, S. Schaeffer, J. DeBruyn, C. Miles, and D. Inglis. 2016. Soil quality and coloid transport under biodegradable mulches. EGU General Assembly 2016, Vienna, Austria, p. 18410.
  • Sintim, H.Y., S. Bandopadhyay, S. Ghimire, M. Flury, A.I. Bary, S. Schaeffer, J.M. DeBruyn, C. Miles, D. Inglis. 2015. Soil quality, moisture, and temperature evaluation under different biodegradable mulches. ASA-CSSA-SSSA Annual Meeting, Minneapolis, MN, Nov. 15-18.

Crop Production

  • Corbin, A., J. Cowan, C.A. Miles, D. Hayes, J. Dorgan, D.A. Inglis, D.A. January 2013. Using Biodegradable Plastics as Agricultural Mulches. Washington State University Extension publication FS081E. 6 p.
  • Cowan, J.S., C.A. Miles, P.K. Andrews, and D.A. Inglis. 2014. Biodegradable mulch performed comparable to polyethylene in high tunnel tomato (Solanum lycopersicum L.) production. J. Sci. Food Agric. 94:1854-1864. doi:10.1002/jsfa.6504.
  • Cowan, J.S., D.A. Inglis, and C.A. Miles. 2013. Deterioration of three potentially biodegradable plastic mulches before and after soil incorporation in a broccoli field production system in northwestern Washington. HortTechnology 23(6):849-858.
  • Cowan, J., C. Miles, D. Inglis, K. Leonas, J. Moore-Kucera, A. Wszelaki, R. Wallace, D. Hayes, and L. Wadsworth. 2010. Evaluating potential biodegradable mulches for high tunnel and field vegetable production. Proceedings Agricultural Plastics Congress, July 31–August 1, Palm Desert, CA. (Abstract, oral presentation and proceedings)
  • DeVetter, L.W, H. Zhang, S. Ghimere, S. Watkinson, and C.A. Miles. 2017. Plastic biodegradable mulches reduce weeds and promote crop growth in day-neutral strawberry in western Washington. Horticultural Science 52(12): 1700-1706. doi:10.21273/HORTSCI12422-17. (cover article)
  • Ghimire, S., E. Scheenstra, and C. Miles. 2020. Soil-biodegradable mulches for growth and yield of sweet corn in Mediterranean-type climate. HortScience 55:317-325. doi:10.21273/HORTSCI14667-19.
  • Ghimire, S., A.L. Wszelaki, J.C. Moore, D.A. Inglis, and C.A. Miles. 2018. Use of biodegradable mulches in pie pumpkin production in two diverse climates. Horticultural Science 53(3):288-294. doi:10.21273/hortsci12630-17.
  • Madrid, B., H. Zhang, C.A. Miles, M. Kraft, D. Griffin-LaHue and L. W. DeVetter. 2022. Humic and acetic acids have the potential to enhance deterioration of select plastic soil-biodegradable mulches in a Mediterranean climate. Agriculture. 12(6):865. doi:10.3390/agriculture12060865
  • Miles, C., L. DeVetter, S. Ghimire, and D.G. Hayes. 2017. Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. Horticultural Science 52(1): 10-15. ddoi:10.21273/HORTSCI11249-16.
  • Miles, C., R. Wallace, A. Wszelaki, J. Martin, J. Cowan, T. Walters, and D. Inglis. 2012. Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortSci. 47:1270-1277.
  • Miles, C. and T. Marsh. 2012. Biodegradable plastic mulches, China and U.S. In: Profit from Storage: The costs and benefits of water buffering.
  • Miles, C., D. Hayes, J. Moore-Kucera, M. Brodhagen, T. Marsh, A. Corbin, R. Wallace, A. Wszelaki, T. Walters, J. Lee, and D. Inglis. 2011. Biodegradable alternatives to plastic mulch. In: Transforming Lives Transforming Landscapes. The Business of Sustainable Water Buffer Management.
  • Moore, J. and A. Wszelaki. 2019. The use of biodegradable mulches in pepper production in the southeastern United States. Horticultural Science 54(6):1031-1038. doi:10.21273/HORTSCI13942-19.
  • Shrestha, S. and C. Miles. 2022. Plastic mulch and in-row spacing effects on sweetpotato yield in northwest Washington. HortTechnology. 32:241-251. doi:10.21273/HORTTECH04992-21
  • Steenbergen, F. van, A. Tuinhof, and L. Knoop (Eds). Wageningen, The Netherlands: 3R Water Secretariat. ISBN:978-90-79658-05-3. Pp. 80-84.
  • Steenbergen, F. van, A. Tuinhof, and L. Knoop (Eds). Wageningen, The Netherlands: 3R Water Secretariat. Pp. 84-89.
  • Tymon, L, and Inglis, D. 2017. Identification and pathogenicity of a Pseudomonas syringae genomospecies 1 phylogroup 2B causing leaf spots and fruit warts on cucurbits in western Washington, U.S. J. Plant Path 99(3). doi:10.4454/jpp.v99i3.3956.
  • Wang, X., C. Mattupalli, G. Chastagner, L. Tymon, Z. Wu, S. Jung, H. Liu, and L.W. DeVetter. 2023. Physical characteristics of soil-biodegradable and nonbiodegradable plastic mulches impact conidial splash dispersal of Botrytis cinerea. PLoS ONE 18(5): e0285094. doi:10.1371/journal.pone.0285094
  • Wang, X., S. Shrestha, L. Tymon, H. Zhang, C. Miles, and L. DeVetter. 2022. Soil-biodegradable mulch is an alternative to non-biodegradable plastic mulches in a strawberry-lettuce double cropping system. Front. Sustain. Food Syst. 6:942645. doi:10.3389/fsufs.2022.942645
  • Zhang, H., C. Miles, B. Gerdeman, D.G, LaHue, and L.W. DeVetter. 2021. Plastic mulch use in perennial fruit cropping systems – A review. Scientia Horticulturae, 281, p.109975.
  • Zhang, H., C. Miles, M. Flury, H. Liu, and L.W. DeVetter. 2020. Soil-biodegradable plastic mulches undergo minimal in-soil degradation in a perennial raspberry system after 18 months. Horticulturae 6(3):47. doi:10.3390/horticulturae6030047.
  • Zhang, H., L. DeVetter, E. Scheenstra, and C. Miles. 2020. Weed pressure, yield, and adhesion of soil-biodegradable mulches with pie pumpkin (Cucurbita pepo). HortScience 55:1014-1021. doi:10.21273/HORTSCI15017-20.
  • Zhang, H., C. Miles, S. Ghimire, C. Benedict, I. Zasada, H. Liu, and L.W. DeVetter. 2020. Plastic mulches improved plant growth and suppressed weeds in late summer-planted floricane-fruiting raspberry. HortScience 55:565–572. doi:10.21273/HORTSCI14734-19.
  • Zhang, H., C. Miles, S. Ghimire, C. Benedict, I. Zasada, and L.W. DeVetter. 2019. Polyethylene and biodegradable plastic mulches improve growth, yield, and weed management in floricane red raspberry. Sci. Hort. 250:371-379. doi:10.1016/j.scienta.2019.02.067.

Adoption and Use

Economics